
Network Fingerprinting for
Securing User Accounts

Opportunities and Challenges

~ whoami

● Stephan Pinto Spindler

● Leading the Security Engineering team at

1&1 Mail & Media (web.de, GMX, mail.com)

https://github.com/s-spindler/

https://www.linkedin.com/in/stephan-pinto-spindler-61a511b2/

https://github.com/s-spindler/
https://www.linkedin.com/in/stephan-pinto-spindler-61a511b2/

Protecting Users

How can you protect your users?

● Credential stuffing

● Password spraying

● Brute forcing

How can you protect your users?

Rate limiting and (temporary) locks/bans!

… but on what?

On accounts

> Only works for targeted attacks

On source IPs

> VPNs, NAT, distributed attacks

Do you even notice the attack?

Metadata

Looking at metadata

GET / HTTP/1.1
Host: web.de
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)...
Accept: text/html,application/xhtml+xml,...
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9,de-DE;q=0.8
Referer: https://www.google.com/
Connection: keep-alive
Cookie: sessionid=123456789; userid=987654321...

version

method

cookies

he
ad

er
s

There’s more…

● TCP/QUIC metadata: duration between steps in the handshake

● HTTP2: settings for, e.g., frame sizes

Focus today: HTTP and TLS

Fingerprints

Common fingerprint "standards" - JA3

● JA3: invented at Salesforce but no longer maintained

● Still supported in various tools

● Uses these fields from Client Hello:

SSLVersion, Cipher, SSLExtension, EllipticCurve, EllipticCurvePointFormat

screenshot straight out of Wireshark

JA4+ suite: by FoxIO, builds on JA3, adds some more

● Methods for TLS, HTTP, TCP, SSH

● Both client and server

Common fingerprint "standards" - JA4

Licensing note:

● Only TLS client fingerprinting (JA4) is BSD licensed

● The rest: FoxIO license - still good to go for internal business use

Source: https://raw.githubusercontent.com/FoxIO-LLC/ja4/refs/heads/main/technical_details/JA4.png

Source: https://raw.githubusercontent.com/FoxIO-LLC/ja4/refs/heads/main/technical_details/JA4H.png

Technical Challenges

Sample setup

client HTTP reverse
proxy HTTP serviceTCP load

balancer

legit / suspicious decision

Out-of-Band Fingerprint Creation

Challenges for out-of-band fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

snorkel snorkel...

Challenges for out-of-band fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

sn
or

ke
l s

no
rk

el.
..

Challenges for out-of-band fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

get info for decision making?

In-Stream Fingerprint Creation

Challenges for in-stream fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

TLS handshake?

Challenges for in-stream fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

extensible?

Challenges for in-stream fingerprint creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

adding metadata

Possible setup for in-stream creation

client HTTP reverse
proxy HTTP serviceTCP load

balancer

TLS handshake

TLS offloading in reverse proxy (can add TLS on upstream connection again)

generate TLS &
HTTP fingerprints

forward
fingerprints
as headers

Implementing HTTP fingerprinting - traefik plugin example
func (p *Plugin) ServeHTTP(rw http.ResponseWriter, req *http.Request) {

 method := req.Method

 version := fmt.Sprintf("%d%d", req.ProtoMajor, req.ProtoMinor)

 cookies := req.Cookies()

 referer := req.Referer()

 headers := req.Header

 lang := req.Header.Get("Accept-Language")

 req.Header.Add("X-FP-HTTP", createFingerprint(method, version, cookies, referer, headers, lang))

 p.next.ServeHTTP(rw, req)

}

Manipulating HTTP metadata - Go example
 client := &http.Client{

 Transport: &http.Transport{

 TLSNextProto: map[string]func(string, *tls.Conn) http.RoundTripper{},

 },

 }

 req, err := http.NewRequest("GET", "https://web.de", nil)

 if err != nil {

 panic(err)

 }

 req.AddCookie(&http.Cookie{Name: "mycookie", Value: "blabla"})

 req.Header.Set("Custom-Header", "some value")

 req.Header.Set("User-Agent", "Chrome/123.4.5.67")

 resp, err := client.Do(req)

forces HTTP 1.1

manipulate headers and cookies

Manipulating HTTP metadata - curl example
curl https://web.de \

 --http1.1 \

 --user-agent "Chrome/123.4.5.67" \

 --cookie "mycookie=blabla" \

 --header "Custom-Header: some value"

Implementing TLS fingerprinting - traefik plugin example
func (p *Plugin) ServeHTTP(rw http.ResponseWriter, req *http.Request) {

 negotiated_version := req.TLS.Version

 sni := req.TLS.ServerName

 alpn := req.TLS.NegotiatedProtocol

 negotiated_cipher := req.TLS.CipherSuite

 req.Header.Add("X-FP-TLS", createFingerprint(negotiated_version, sni, alpn, negotiated_cipher))

 p.next.ServeHTTP(rw, req)

}

> Missing TLS handshake information (supported versions, cipher suites, extensions)

Manipulating TLS metadata - curl example
curl https://httpbin.ams.fe-intg-iz2-bap.poinfra.server.lan/anything \

 --alpn \

 --tlsv1.2 \

 --tls-max "1.3" \

 --ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384 \

 --tls13-ciphers TLS_AES_128_GCM_SHA256

sets minimum TLS version to 1.2

specifies ciphers for TLS versions <= 1.2

> No easy way of manipulating extensions

Technical Challenges - Bonus Round

Source: https://raw.githubusercontent.com/FoxIO-LLC/ja4/refs/heads/main/technical_details/JA4.png

always 2 digits
max. 99

Organizational Challenges

Organizational challenges

client HTTP reverse
proxy HTTP serviceTCP load

balancer

team A team B team C

Regulatory Challenges

● Fingerprints can count as personally

identifiable information

● Storage might be off-limits

● Talk to your data privacy officer

Privacy

Conclusion

● Probably yes

● Avoid being an easy target

● Drive up cost for attackers

Still worth the effort?

Thank you!

